Integrated Aquaculture

Imagine being able to produce your own freshwater fish and salad – simultaneously – in your own backyard.

Well, you can…..using integrated aquaculture.

The three important elements in any integrated aquaculture system are plants, fish and beneficial microbiology. Put simply, you feed the fish, the microbes turn the fish wastes into plant food and the plants clean the water for the fish.

The best known manifestation of integrated aquaculture is aquaponics – the combination of intensive aquaculture and hydroponics.  Aquaponics is not, however, the only way to integrate the production of fish and plants.

While the fish and plants are the visible elements of the integration, it’s microbiology that makes it all possible.  While this microbiology is very complex, the aquatic nitrogen cycle is easy to understand and is the part that allows for  the conversion of toxic fish wastes into plant food.

Nitrogen Cycle

The waste produced by the fish breaks down to produce ammonia.

When the ammonia levels in the fish tank reach a certain level, bacteria (Nitrosomonas) begin to colonise the system. As the numbers of these bacteria build, the ammonia (NH3) is converted to nitrite (NO2). As the ammonia levels drop, the nitrite levels increase. The nitrites (like ammonia) are toxic to fish.

When the nitrite levels in the water reach a certain point, other bacteria (Nitrobacter/Nitrospira) begin to colonise the system. These bacteria convert nitrites to nitrates (NO3), which are far less harmful to the fish.

While the microbiology associated with aquaculture is complex, the equipment needed is very straightforward.

To produce freshwater fish in your backyard, you’ll need:

  1. A fish tank
  2. A pump and some fittings
  3. Mechanical and biological filtration

That’s it! These three components comprise a basic recirculating aquaculture system. You just add water and some fish……and start doing some water tests.

The first successful closed loop integration of fish and plants was called the Integrated Aqua-Vegeculture System (iAVs).  It was invented by Dr Mark R McMurtry in 1985.

In its simplest iteration, iAVs consists of a fish tank and sand bio-filters. 

Subsequent developments saw the emergence of what became known as aquaponics…the integration of recirculating aquaculture and hydroponics.  

Aquaponics comes in many forms but the dominant systems are:

  • gravel culture – flood and drain aquaponics
  • deep water culture – raft aquaponics

Both recirculating aquaculture and hydroponics create a waste stream.  In a conventional recirculating aquaculture system, nitrates are removed through water replacement where a predetermined volume of water is dumped each day. In a conventional hydroponic system, inorganic salts are used to provide nutrients for plants. Once the nutrient levels drop below a certain level, they are also dumped. In both situations, the wasteful disposal of nutrient-rich effluent creates environmental issues.

When they are integrated, however, the waste streams are reconciled – to the benefit of both fish and plants.

Integrated aquaculture is not limited to iAVs and aquaponics. There are also a number of soil-based options.

Since they all grow plants, the choice of a particular system boils down to personal preferences and the availability of resources.

Regardless of the method used, integrated aquaculture differs from conventional horticulture in a number of important ways.

The first (and most obvious) distinction is the source of nutrients – the fish.  Integrated aquaculture effectively provides two crops – one is fish and the other plants – for the same volume of water that it would otherwise take just to grow the plants.

The other very important difference is that, since chemical herbicides or pesticides are toxic to fish, they cannot be used in recirculating systems.  Clean chemical-free food is the result.

Fish

The list of Australian freshwater fish that can be produced in a backyard includes:

  1. Barramundi
  2. Murray Cod
  3. Silver Perch
  4. Jade Perch
  5. Sleepy Cod
  6. Eel-tailed Catfish

Freshwater crayfish include Yabbies (Cherax Destructor), Redclaw and Marron.

Every region throughout the world has its own freshwater fish species.

Pelletised rations, specially formulated for native freshwater fish, are available from fodder stores.

Plants

Integrated aquaculture lends itself to virtually any plant…particularly food plants.  The specific method will vary according to the type of plants being grown.

I’ve been engaged in integrated aquaculture since 2005…and I’ve written hundreds of articles on the subject.  In fact, I self-published what was arguably the first book on the subject in the world (The Urban Aquaponics Manual) back in 2007.  This material is being reviewed and will be available on this site.

-o0o-
This article was first written in 2009.  It was reviewed in September 2017.

Foreword

The Urban Aquaponics Manual first saw the light of day in 2007 – the first publication of its type in the world.

I created the 2nd Edition in 2008 and, in 2010; I revised the Manual yet again (3rd Edition) and made it available through a subscription web site – another first.

In 2012, I embarked on this 4th Edition.

I had already done a substantial amount of the work when, in 2014, I made the acquaintance of Dr Mark R McMurtry. In the ensuing couple of months, everything that I thought I knew about integrated aquaculture got turned on its head. (more…)

An Introduction to DIY Food Production.

Growing one’s own food is a key aspect of the ‘Have More For Less‘ concept…and I’ve been doing it for much of the past 40 years.  For the past 12 years, I’ve also had an enduring commitment to integrated agri-aquaculture…and I’ve been writing about it for much of that time.

Suffice to say, I have a substantial body of work on DIY food production to share with you.  To simply dump it in front of you would be a little overwhelming – so I’ve created the following links to enable you to access the material in a structured manner.

I developed a small-scale food production regime that, in 2008, I described as Microponics.  Essentially, Microponics embraces the integrated production of fish, plants and micro-livestock…in an urban backyard.  If this all seems a bit confusing, at this stage, just bear with me and I’ll help you through it.

The first thing to understand is that there’s no need to do everything that I talk about.  If you do nothing more than grow your own salad greens, you’ll be in front.  If, however, you want to make a big difference to your food bill…and your health…the sky’s the limit.

Let’s begin with why we should grow our own food…and then we’ll look at what’s involved in producing enough food for our own kitchen.

If we try to mimic commercial food producers, the food that we grow will be more expensive than food bought from a supermarket.  To eliminate the need for commercial fertilisers, herbicides and pesticides – and to offset the cost of live-stock food – we use something called integration to give us a financial edge while, at the same time, preserving our health and the well-being of the environment.

Now, Microponics is the integration of fish, plants and micro-livestock and it operates on the premise that the one thing that all food organisms have in common with each other is water – so we’ll introduce you to integrated aquaculture in its various forms.

Of course, one consequence of growing fish is that we end up with nutrient-rich water that we can use to grow fruit and vegetables for us – and fodder for our micro-livestock.

When people think of growing plants, things like forks, shovels, hard work and sore backs quickly enters their mind.  There are lots of very interesting ways that you can grow food plants that have nothing to do with hard work so we’ll be exploring things like the Integrated Aqua-Vegeculture System (iAVs), aquaponics, wicking beds, square foot gardens – and much more.

A constant diet of fish and salad would quickly become boring so we’ll also look at backyard egg and meat production…and that’s where the micro-livestock enter the picture.  There’s a long list of those for you to choose from including: 

  • chickens
  • ducks
  • turkeys
  • quail
  • rabbits
  • geese
  • pigeons
  • snails
  • bees 

The links in this article are just a taste of what’s to come as we venture forth into the world of Microponics and integrated backyard food production.

-o0o-

Grow Your Own Food

Grow Your Own Food An Introduction to DIY Food Production Why grow your own food? How Much is Enough? Integration Microponics Duckweed Integrated Aquaculture Broiler Chickens Muscovies We talk about these things over at the Have More For Less Discussion Forum...so...

Getting Started with DIY Food Production

In our Introduction to DIY Food Production, we talked about why we should grow our own food and how to determine how much we’d need…and we introduced you to Microponics – the integration of fish, plants and micro-livestock.

While Microponics is not complex, we want to make your entry into DIY food production even easier so we’ve mapped out a pathway to help you get started…quickly!

Let’s begin with a garden.

Now, just so we’re clear, I’m not talking about the traditional kind of gardening where you labour and sweat…and run up big water bills while you fight weeds and insects for a tiny share of what you grow.

I’m talking about smart gardening…which is the reverse of traditional gardening.

The methods that we’ll show you are efficient in their use of water and labour…and require no herbicides and pesticides…so the outcome is clean fresh food for you and your family.

We’ll start this gardening adventure with three ideas for you to consider:

Any one of these methods will see you eating your first leaf salad, Asian greens and radishes within a few short weeks of planting your seeds or seedlings.  They will also accommodate any plant – including vines and root crops.

What’s more, they are water-efficient and won’t leave you with a sore back…and will only require the investment of an hour or two of your time to get started.  They will only require a few minutes of maintenance each day.

The other good thing is that you can take a modular approach – gradually growing your vegetable garden – one module at a time.

Right from the outset, we’d encourage you to start to think about food production from a waste transformation perspective.  

At this early stage, that means composting your kitchen wastes and newly acquired vegetable residues.  Keep it simple.  Just put the food scraps into a compost bin and allow them to decompose naturally.  Once you fill the bin, remove all of the earthy-smelling black compost to use on your plants.  Put the partly composted stuff back into the bin and resume adding your kitchen wastes.

You can also get a worm farm going.  Compost and worm castings are superb plant foods…but, even more importantly, they are part of the biological leveraging that enables you to produce your food cost-effectively…while also keeping you out of the destructive and expensive chemical fertiliser/herbicide/pesticide cycle upon which industrial farming is premised.

Once you’ve got your vegetable garden happening, it’s time to expand the menu to include some eggs.

Three chickens will produce 15 – 20 of the cleanest and freshest eggs that you’ll ever eat – each week – and you’ve achieved your first important milestone in your DIY food production.  You can now sit down to your first totally homegrown meals.

Don’t have the space…or local government or housing convenants prohibit keeping chickens?

Never mind…because you will almost certainly have the space to keep Japanese quail.  A dozen quail hens will provide you with 60 – 80 eggs a week.   Five quail eggs equal one chicken egg and, anything that you can do with a chicken egg, you can do with quail eggs.  A few quail hens can be housed in a square metre and they can be explained away (to anyone who needs to know) as cage bird pets.

The arrival of your chickens or quail signals the need for a subtle shift in our waste transformation efforts.  

First, we now need to redirect everything in the way of food wastes to the chickens or quail.  Start to think of those fruit and vegetable peelings, plate scrapings, stale bread and virtually anything that you’d eat yourself as being leftovers to be consumed by your birds.   

Kitchen wastes will offset the cost of purchased chicken mash or pellets and the best (and fastest) way to compost anything is to put it through the guts of a chicken.

Second, we need to start thinking of chicken or quail manure as an asset…something that has value  -and that can have further value added to it.  

At the very least, we can rake it up, mix it up with other carbon-rich plant wastes and end up with a richer compost…or we can feed to worms.  If we are keeping a  dozen or more chickens, then we can gather it up and feed it to Black soldier fly larvae and, in the process, produce another valuable dietary supplement for our chickens.  What’s more, we can take the larvicast (the stuff that’s left over when the BSF larvae are finished with the chicken/quail manure) and feed that to our worms, too.

Welcome to the world of the cascading returns that become possible through waste transformation farming.

Now, we’ll quickly reach the point where…as good as it is…our egg salad will become a little boring from a culinary perspective.  When (and if) you reach that point, it’s time to start thinking about some homegrown meat.

There are a range of options available to you when it comes to backyard meat production and they include:

You can even add lesser known organisms like snails and guinea pigs to the list – subject to your culinary and cultural preferences.

If you already have quail hens all you need to do is buy some cockerels and let nature take its course.  Incubate the eggs and 16 – 17 days later you’ll have your first chicks.  About six weeks later, you’ll be eating your first meal that includes homegrown meat.

You can purchase day-old broiler chicks from a hatchery or feed and grain store and be eating them about six weeks later.

Muscovy ducks are perfect waterfowl for backyard food producers.  They make very little noise and a drake and three or four ducks will keep you in duck meat forever.

A buck rabbit and 4 does will provide you with some of the finest meat that ever graced a kitchen – and you can raise it in a footprint of about three square metres.

Of course, all of this has to acknowledge that meat production is not a story with a happy ending…but, if you already eat meat, then you owe it to yourself and your family to only eat clean fresh meat that is ethically raised…and processed.

Once again, the rabbit manure is an important part of the value chain and should be harvested.  It, too, can be fed to the BSF larvae and/or worms. Indeed, chickens will even eat it.

By now, you are eating clean fresh food the like of which would cost you a lot of money if you had to buy it.

But, we’re not finished.  How would you like to add fish to the menu?

A simple recirculating aquaculture system (RAS) will enable you to grow your freshwater fish in a footprint of as little as five or six square metres.  

What’s more, you can use the nutrient-rich water from your RAS to water your gardens…effectively providing you with two crops – fish and plants – for the same amount of water that it would previously have required just to grow the plants.

Connect a hydroponic growing system to your recirculating aquaculture system and you’re doing aquaponics.

You can even build my personal favourite – the integrated aqua-vegeculture system (iAVs) –  the truly remarkable food production system that was the precursor to aquaponics.

Small-scale food production doesn’t end there.  If you have the space and zoning, you can also include pigs, goats and small cattle in your integrated food production system…along with fungi and fodder plants.  The sky’s the limit!

All of these things are not only possible but they are also quite easy to do…and we can help you.

Welcome to the world of Microponics and waste transformation farming…where the waste products of one organism become the feedstock for other organisms…in the quest for clean fresh food.

-o0o-